heatmap returns a heatmap plot and a list of genes in the plot
heatMap(
object,
norm.method = "quant",
annotation.col = c("class", "segment", "region"),
ngenes = 200,
scale.by.row.or.col = "row",
show.rownames = FALSE,
show.colnames = FALSE,
clustering.method = "average",
cluster.rows = TRUE,
cluster.cols = TRUE,
clustering.distance.rows = "correlation",
clustering.distance.cols = "correlation",
annotation.row = NA,
breaks.by.values = seq(-3, 3, 0.05),
heatmap.color = colorRampPalette(c("blue", "white", "red"))(120)
)
object Normalized NanoStringGeoMxSet object to use for heatmap. It is a S4 object.
normalization method quant: Upper quartile (Q3) normalization and neg: background normalization (Default: quant)
the annotations shown on right side of the heatmap (Default: c("class", "segment", "region"))
Number of high CV genes to cluster and plot (Default: 200)
Scale.by perform z-scaling. Choices are "row", "column" and "none" (Default: "row")
Boolean specifying if row names are be shown. (Default: FALSE)
Boolean specifying if column names are be shown. (Default: FALSE)
Clustering method used. Accepts the same values as . hclust. e.g "ward.D", "ward.D2", "single", "complete", "average" . (Default: "average")
Boolean values determining if rows should be clustered or hclust object (Default: TRUE)
Boolean values determining if cols should be clustered or hclust object (Default: TRUE)
Distance for clustering by rows (correlation, or euclidean) (Default: "correlation")
Distance for clustering by cols (correlation, or euclidean) (Default: "correlation")
A data frame that specifies the annotations shown on left side of the heatmap (Default: NA)
A sequence of numbers that covers the range of values in mat (Deafult: seq(-3, 3, 0.05), provides 120 colors)
Colors of heatmap to match breaks above (Default: colorRampPalette( c("blue", "white", "red"))(120))
A list containing the plot genes data matrix, and the heatmap plot
Clustering high CV Genes and making a heatmap
Exploring the normalized data by calculating the coefficient of variation (CV) for each gene (g) using the formula CVg=SDg/meang.
We then identify genes with high CVs that should have large differences across the various profiled segments.
This unbiased approach can reveal highly variable genes across the study.
We plot the results using unsupervised hierarchical clustering, displayed as a heatmap.
This function will run pheatmap from the GeoMxTools package.