spatialDeconvolution estimate cell composition across DSP samples from reference expression matrix
spatialDeconvolution(
object,
expr.type = "q_norm",
prof.mtx,
clust.rows = TRUE,
clust.cols = TRUE,
group.by = "none",
plot.fontsize = 5,
use.custom.prof.mtx = FALSE,
discard.celltype = FALSE,
normalize = FALSE,
min.cell.num = 0,
min.genes = 10,
ref.mtx,
ref.annot,
cell.id.col = "CellID",
celltype.col = "LabeledCellType"
)
Nanostring object containing normalized gene expression data
Name of slot containing normalized gene expression data
Use stored profile matrix
Cluster rows in heatmap (Default: TRUE)
Cluster columns in heatmap (Default: TRUE)
Organize heatmap / barplot columns by metadata group (Default: "none")
Set size of labels on all figures (Default: 5)
Remove any celltype(s) that is not of interest (Default: FALSE)
Scale profile matrix gene expression according to gene count (Default: FALSE)
Prevent deconvolution of celltype(s) if number of corresponding cells is below this threshold (Default: 0)
Filter cells based on minimum number of genes expressed (Default: 10)
Custom reference expression matrix (Gene x Reference_Samples)
Custom reference data.frame with cell.id and celltype information
Column of data.frame containing cell.id.col info
Column of data.frame containing celltype info
Generate custom profile matrix (Default: FALSE)
A list dsp.data containing the results of spatial deconvolution, res$beta: matrix of estimated cell abundances res$X: cell signature (gene x celltype) matrix used to generate deconvolution results res$yhat, res$resids: fitted values and log2-scale residuals from deconvolution, can be used to measure goodness of fit res$prop_of_all: res$beta scaled to proportion of celltype across sample figures: heatmap and barplot of cell profile matrix and estimated cell abundances in data
Helper functions comes from https://bioconductor.org/packages/release/bioc/vignettes/SpatialDecon/inst/doc/SpatialDecon_vignette_NSCLC.html
Uses Nanostring developed functions to compute estimated cell fractions in DSP samples. Allows for users to group samples based on metadata information