Creates Seurat Objects from h5 files for individual or merged samples. Will log normalize and produce QC figures for individual samples

processRawData(
  input,
  sample.metadata.table = NULL,
  sample.name.column = NULL,
  organism,
  rename.col = NULL,
  keep = T,
  file.filter.regex = c(),
  split.h5 = F,
  cell.hash = F,
  do.normalize.data = T
)

Arguments

input

Input can be a vector of scRNA-Seq .h5 files, or a list of seurat objects for each sample. vector should include file path.

sample.metadata.table

A table of sample metadata that you want to append to the already-existing metadata within the input Seurat Object(s). (optional)

sample.name.column

The column of the input metadata.to.append table that contains sample names matching the orig.idents in the input object(s). (optional)

organism

Please select species. Choices are Human or Mouse. (Default: Human).

rename.col

Select column name from metadata table that contains new samples name (optional).

keep

If TRUE, keep files when pattern is found in sample name. If FALSE, remove files when pattern is found in sample name. The pattern is set in the file.filter.regex parameter (below).

file.filter.regex

Pattern or regular expression in file name. Use the keep parameter (above) to keep or remove files that contain pattern. If samples have been renamed set regular expression based on new names

split.h5

If TRUE, split H5 into individual files. (Default: FALSE)

cell.hash

If TRUE, dataset contains cell hashtags. (Default: FALSE)

do.normalize.data

If TRUE counts table will be log2 normalized. If input contains counts that are already normalzed set to FALSE. (Default: TRUE)

Value

Seurat Object and QC plots

Details

This is Step 1 in the basic Single-Cell RNA-seq workflow. Returns data as a Seurat Object, the basic data structure for Seurat Single Cell analysis.